3.872 \(\int \frac{(f+g x)^2}{(d+e x) \sqrt{a+b x+c x^2}} \, dx\)

Optimal. Leaf size=176 \[ \frac{g \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right ) (-b e g-2 c d g+4 c e f)}{2 c^{3/2} e^2}+\frac{(e f-d g)^2 \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{e^2 \sqrt{a e^2-b d e+c d^2}}+\frac{g^2 \sqrt{a+b x+c x^2}}{c e} \]

[Out]

(g^2*Sqrt[a + b*x + c*x^2])/(c*e) + (g*(4*c*e*f - 2*c*d*g - b*e*g)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x
 + c*x^2])])/(2*c^(3/2)*e^2) + ((e*f - d*g)^2*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e +
a*e^2]*Sqrt[a + b*x + c*x^2])])/(e^2*Sqrt[c*d^2 - b*d*e + a*e^2])

________________________________________________________________________________________

Rubi [A]  time = 0.304916, antiderivative size = 176, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {1653, 843, 621, 206, 724} \[ \frac{g \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right ) (-b e g-2 c d g+4 c e f)}{2 c^{3/2} e^2}+\frac{(e f-d g)^2 \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{e^2 \sqrt{a e^2-b d e+c d^2}}+\frac{g^2 \sqrt{a+b x+c x^2}}{c e} \]

Antiderivative was successfully verified.

[In]

Int[(f + g*x)^2/((d + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(g^2*Sqrt[a + b*x + c*x^2])/(c*e) + (g*(4*c*e*f - 2*c*d*g - b*e*g)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x
 + c*x^2])])/(2*c^(3/2)*e^2) + ((e*f - d*g)^2*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e +
a*e^2]*Sqrt[a + b*x + c*x^2])])/(e^2*Sqrt[c*d^2 - b*d*e + a*e^2])

Rule 1653

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq
, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + b*x + c*x^2)^(p + 1))/(c*e^(q - 1)*(
m + q + 2*p + 1)), x] + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e^
q*(m + q + 2*p + 1)*Pq - c*f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(b*d*e*(p + 1) + a*e^2*(m + q
 - 1) - c*d^2*(m + q + 2*p + 1) - e*(2*c*d - b*e)*(m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p +
 1, 0]] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] &&  !(IGtQ[m, 0] && RationalQ[a, b, c, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(f+g x)^2}{(d+e x) \sqrt{a+b x+c x^2}} \, dx &=\frac{g^2 \sqrt{a+b x+c x^2}}{c e}+\frac{\int \frac{\frac{1}{2} e \left (2 c e f^2-b d g^2\right )+\frac{1}{2} e g (4 c e f-2 c d g-b e g) x}{(d+e x) \sqrt{a+b x+c x^2}} \, dx}{c e^2}\\ &=\frac{g^2 \sqrt{a+b x+c x^2}}{c e}+\frac{(e f-d g)^2 \int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx}{e^2}+\frac{(g (4 c e f-2 c d g-b e g)) \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{2 c e^2}\\ &=\frac{g^2 \sqrt{a+b x+c x^2}}{c e}-\frac{\left (2 (e f-d g)^2\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x}{\sqrt{a+b x+c x^2}}\right )}{e^2}+\frac{(g (4 c e f-2 c d g-b e g)) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{c e^2}\\ &=\frac{g^2 \sqrt{a+b x+c x^2}}{c e}+\frac{g (4 c e f-2 c d g-b e g) \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{2 c^{3/2} e^2}+\frac{(e f-d g)^2 \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x+c x^2}}\right )}{e^2 \sqrt{c d^2-b d e+a e^2}}\\ \end{align*}

Mathematica [A]  time = 0.536556, size = 170, normalized size = 0.97 \[ \frac{-\frac{g \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+x (b+c x)}}\right ) (b e g+2 c d g-4 c e f)}{c^{3/2}}+\frac{2 (e f-d g)^2 \tanh ^{-1}\left (\frac{-2 a e+b (d-e x)+2 c d x}{2 \sqrt{a+x (b+c x)} \sqrt{e (a e-b d)+c d^2}}\right )}{\sqrt{e (a e-b d)+c d^2}}+\frac{2 e g^2 \sqrt{a+x (b+c x)}}{c}}{2 e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(f + g*x)^2/((d + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

((2*e*g^2*Sqrt[a + x*(b + c*x)])/c - (g*(-4*c*e*f + 2*c*d*g + b*e*g)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x
*(b + c*x)])])/c^(3/2) + (2*(e*f - d*g)^2*ArcTanh[(-2*a*e + 2*c*d*x + b*(d - e*x))/(2*Sqrt[c*d^2 + e*(-(b*d) +
 a*e)]*Sqrt[a + x*(b + c*x)])])/Sqrt[c*d^2 + e*(-(b*d) + a*e)])/(2*e^2)

________________________________________________________________________________________

Maple [B]  time = 0.296, size = 613, normalized size = 3.5 \begin{align*}{\frac{{g}^{2}}{ce}\sqrt{c{x}^{2}+bx+a}}-{\frac{{g}^{2}b}{2\,e}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ){c}^{-{\frac{3}{2}}}}-{\frac{{g}^{2}d}{{e}^{2}}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ){\frac{1}{\sqrt{c}}}}+2\,{\frac{fg}{e\sqrt{c}}\ln \left ({\frac{b/2+cx}{\sqrt{c}}}+\sqrt{c{x}^{2}+bx+a} \right ) }-{\frac{{d}^{2}{g}^{2}}{{e}^{3}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}}}}+2\,{\frac{dfg}{{e}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}}}}-{\frac{{f}^{2}}{e}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^2/(e*x+d)/(c*x^2+b*x+a)^(1/2),x)

[Out]

g^2*(c*x^2+b*x+a)^(1/2)/c/e-1/2*g^2/e*b/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))-g^2/e^2*d*ln((1/2*
b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)+2*g/e*f*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)-1/e^3/
((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2
)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*d^2*g^2+2/e^2/((a*e^2-b*d*
e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/
e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*d*f*g-1/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1
/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*
c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*f^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (f + g x\right )^{2}}{\left (d + e x\right ) \sqrt{a + b x + c x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**2/(e*x+d)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((f + g*x)**2/((d + e*x)*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError